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Abstract

The traditional FDTD discretization
of the Maxwell equations in which all cells are
equal has been proved not to be efficient in many

cases. These cases include the structures in which
the field intensities are not uniformly distributed

in the computation domain. However the direct
use of graded discretization grids inserts a first
order error in the conventional difference equa-
tions. Many authors have proposed solutions for
this problem. In the present work, some of these
solutions are reviewed, implemented and evalu-
ated. The solution proposed by the authors in a
previous paper has proved to give better results in
terms of accuracy and stability for greater length
ratio between neighbouring cells.

1 Introduction

Since 1966, as Yee proposed his uniform mesh
[1] for the finite difference time domain (FDTD)
analysis of electromagnetic problems, a lot of ad-
vances has been made in order to get the method
more efficient. Choi and Hoefer [2] have pre-
sented a graded mesh which is able to concentrate
the computational efforts in the regions of greater
field intensity. This procedure increases the num-
ber of computer operations for each cell in each
time step, but allows the use of less cells for the
same accuracy, which leads to a faster calcula-
tion. Xiao and Vahldieck [3] have shown a graded

scheme which allows the correction of the first or-
der error. Much more computation is needed for

each cell by this method due to the corrections

one should make to ensure the maintainance of the
second order accuracy. But the strong reduction

of the number of cells for a given precision causes

a better efficiency than the other schemes. A sim-
ilar procedure has been introduced by KrupeZevi¢
et allii [4]. In this case the discretization is made
using three points instead of two for each differen-
tiation, providing second order accuracy. In a pre-
vious paper [5], Tupynambd and Omar have pro-
posed another method for correcting the first order
errors by using extrapolation. This procedure has
already been proved to give very small reflections
even for very large length ratios between neigh-
bouring cells [6].

In this paper, these four different graded grid
procedures are compared. In the next section,
these procedures are reviewed and a generalized
equation is introduced that is able to represent
each of them with appropriate change of coeffi-
cients. Section 3 presents the numerical results of
these methods by the computation of propagation
characteristics in a shielded coplanar waveguide
using graded grids with different length ratios. A
general conclusion is then drawn regarding accu-
racy and stability of the techniques. This conclu-
sion intends to help the FDTD developer in the
choice of the most adequate discretization proce-
dure.

2 Graded grid procedures

In this section, different graded grid procedures
are presented. In order to simplify the formula-
tion, only the derivative of H, in the x-direction
is discretized in the different ways. All quotations
and points are refered in Fig. 1. The initials of
the authors are given for identification of the tech-
niques.
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Figure 1: Graded grid in the z-direction
A. Cheoi and Hoefer procedure (CH) oH,| _ 0H,| A <8Hy _ OH, )
Choi and Hoefer [2] have made a direct first order dz |, Oz |, I\ Oz |, 0z |p)

discretization of the derivative. This yields

om,|  Hi— Hi "
afl: o A‘rz+2Aa.z—l

One should observe that, at the central point “O”
where I, is to be calculated (Fig. 1), this equation

has a first order error for different values of Az’
and Az*~ L.

B. Xiao and Vahldieck procedure (XV)

Xiao and Vahldieck [3] have noticed that equation
(1) presents second order accuracy at the point

“A”, which is located at the same distance from
the points “B” and “C”, where the field compo-

nent H, is calculated (see Fig. 1). In the same
way, this derivative can be calculated at the points
“D” and “E” with second order accuracy.

Using an interpolation of these three values one

can obtain the corrected derivative at “O”, accord-
ing to the following equation:

(2)

where A’ and [* are shown in Fig. 1.

C. Krupezevic et allii procedure (KBA)

Krupezevic et allii [4] have made the direct sec-
ond order discretization of the derivative using
three points. Using the present notation and cal-
culating for the point “O” results in

OH, 1 [Kz + K3 ( . Hi—l)
8.1‘ o I{l + [{3 I(l + [(2 Y Y
Ky — K,y :
o Bz Mg g ] 3
K3 — Ky ( Y y) ’ )

where K, N, and A5 are shown in Fig. 1.

D. Tupynamba and Omar procedure
(TO)

Tupynamba and Omar [5] have considered the
possibility that the change of cell length could be
accompained by an interface between two media.
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Figure 2: Transversal cut of a shielded coplanar waveguide

In this case, this derivative is not continuous at
this interface so that the arguments of second or-
der accuracy do not apply.

They have proposed the extrapolation of [, at
the side where the cell is coarser (right side in
Fig. 1) to the point “F”, so that “C” and “F” are
equidistant from the interface (point “O”). The ex-
trapolation is made using a second order trace of
the field component values H;, H;*' and H ",

which results in

1 dgl-.i”—dli-lﬁ‘r1
o — Yy Yy
olr ds — dq (d3 dy — d
ds Hit' — dy Hi?
— d— 2y ), (4)
ds — ds

where d;, dy and d3 are shown in Fig. 1.
The derivative can then be expressed in the
usual form:

0H,
Oz

|, — Hit
N = ®)

O

A similar set of equations can be found for the
case where the coarser cell is on the left hand side,
that means Az*"! > Az

E. Generalized equation

All these four procedures can be reduced to the
following generalized equation:

0H,
Ox o

=S C.H*, ©)

where (', can be calculated for each case using the
above equations (1) to (5).

These coefficients are not presented here due
to space restrictions. It is however important to
notice that CH needs only two coefficients, KBA
needs three, and XV and TO each four. TO needs
furthermore a decision on which cell is longer.

The number of coefficients will determine the
computation time for each cell, but not for the

whole structure. This depends on the number of
cells that must be included, which depends on the
performance of the used technique. This perfor-
mance will be evaluated in the next section.

3 Numerical results

For the comparison between these different tech-
niques, the shielded coplanar waveguide shown in
Fig. 2 has been calculated using the compact 2D-
FDTD [5]. The dielectric substrate of the struc-
ture has arelative permitivity €, = 12.5. Only one
half of the structure has been discretized by mak-
ing use of a magnetic wall at the symmetry plane.

A first calculation has been made in which all
cells had the same size, namely 0.167 mm x 0.1
mm in a 180 x 50 grld This yields obviously
equal results for all procedures. This result has
been used as reference for the comparison.

In the next calculations, the inner 3 x 5 cells
shown in datail in Fig. 2 have been kept un-
changed while the surrounding cells have been

chosen wider and wider in the directions onto the
metalhc walls In each of these directions, 1.e.
“x”, “-x” and “y”, going from this inner block,

the cells have been grouped in three rows (or

columns) in which the cell lengths have been “r
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Figure 3: Calculation error in function of the cell
length ratio

times the cell lengths of the preceeding group,
where “r” is the parametric ratio of each calcu-
lation. A limit of A/20 at 8 GHz has been fixed
for the cell lengths in order not to cause unstabil-
ity up to this frequency. The ratios have assumed

the values 1, 1.1, 1.2, 1.5, 2, 3, 5, 10. The com-
pact 2D-FDTD has been applied with propagation

constant § varying from 0.1 to 0.4 rad/mm. The
average phase velocity in the resulting frequency
range has been used for comparison. Fig. 3 shows
the percentual error of the phase velocity com-
pared to the phase velocity of the first calculation
(ratio 1) for the different procedures.

KBA and XV have shown good values for very
stnall ratios, but have presented unstability for ra-
tios greater than 1.5. CH had the expected be-
haviour of a procedure with first order error with
nearly linearly increasing error. TO has not pre-

sented the best results for small ratios but has
rlrz)amtamed the error less then 7 % even for ratio
Further calculations with TO using smaller in-

ner cells and ratio till 20 have shown no further
degradation of the relative error. This shows that

the error is due to the great length of the outer
cells, rather than due to the length step.

4 Conclusions

Four graded grid procedures have been compared
by calculating the same structure with different
cell length ratios. As expected, CH fails to present
good results for greater cell length ratios because
it does not include any correction for this nu-
meric discontinuity. On the other hand, KBA and
XV were not correct in using interpolation of the

derivative of the magnetic field in a region where
it is not continuous, namely at the interface be-

tween different media. .
The procedure proposed by the authors in a

previous paper has been the only one of the
tested techniques which has presented good per-
formance by cell length ratios greater than 2.
Other calculations with this technique have shown
areflection of less than -50 dB due to a cell length
ratio of 10. These feature enable the possibility of
using a much smaller number of cells in the calcu-
lation. In the example used in the last section just
20 x 14 cells have been required in the last run in-
stead of the initial 180 x 50.
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